跳转至

常微分方程简介

Quote

本文内容主要参考自 ODE-The Bright Side of Mathematics

1. 常微分方程的定义

k阶常微分方程 (ODE of order k):

\[ F(t, x, \dot{x}, ..., x^{(k)}) = 0 \]

1.1 autonomous ODE

  • autonomous ODE: \(\dot{x} = w(t, x)\)
  • non-autonomous ODE: \(\dot{x} = v(x)\)

1.2 homogeneous ODE

  • homogeneous ODE: \(\dot{x} = A(t)v(x)\)
  • non-homogeneous ODE: \(\dot{x} = A(t)v(x) + B(t)\)

1.3 linear ODE

  • linear ODE: \(\dot{x} = A(t)x + B(t)\)

2. 高阶常微分方程到一阶常微分方程组

任意阶常微分方程都可以转换为一阶常微分方程组

  • n 阶 autonomous ODE 可以转换为 n 个一阶 autonomous ODE
  • n 阶 non-autonomous ODE 可以转换为 n+1 个一阶 autonomous ODE

假设有3阶 non-autonomous ODE 如下:

\[ \dddot{x} = cos(\ddot{x}) + \dot{x} ^ 2 + x - t ^ 4 \]

\[ \boldsymbol{y} = \begin{pmatrix} t \\ x \\ \dot{x} \\ \ddot{x} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} \]

则有:

\[ \begin{aligned} \dot{y_0} &= 1 \\ \dot{y_1} &= y_2 \\ \dot{y_2} &= y_3 \\ \dot{y_3} &= cos(y_3) + y_2 ^ 2 + y_1 - y_0 ^ 4 \\ \end{aligned} \]

由此,我们得到了一个一阶常微分方程组:

\[ \dot{\boldsymbol{y}} =\begin{pmatrix} \dot{y_0} \\ \dot{y_1} \\ \dot{y_2} \\ \dot{y_3} \end{pmatrix} = \begin{pmatrix} 1 \\ y_2 \\ y_3 \\ cos(y_3) + y_2 ^ 2 + y_1 - y_0 ^ 4 \end{pmatrix} \]

3. 常见常微分方程求解

Initial Value Problem

\[ \begin{aligned} &\text{Given:} \\ &\quad \dot{x} = w(t, x) \quad w: \mathbb{R} \times \mathbb{R^n} \to \mathbb{R^n} \\ &\quad x(0) = x_0 \\ &\text{Find all} \\ &\quad \alpha: (t_0, t_1) \to \mathbb{R} \quad s.t. \quad \alpha(t_0) = x_0 \quad and \quad \alpha'(t) = w(\alpha(t)) \end{aligned} \]

3.1 autonomous ODE 求解

例1:

\[ \begin{aligned} &\dot{x} = \lambda x \quad x(0) = x_0 \neq 0 \\ &=> \frac{dx}{dt} = \lambda x \\ &=> \frac{dx}{x} = \lambda dt \\ &=> \int \frac{dx}{x} = \int \lambda dt \\ &=> ln|x| = \lambda t + C \\ &=> |\alpha(t)| = e^{\lambda t + C} = e^C e^{\lambda t} \\ &=> \fbox{ $\alpha(t) = x_0 e^{\lambda t} $ } \end{aligned} \]

例2:

\[ \begin{aligned} &\quad \dot{x} = x^2 \quad x(0) = x_0 \neq 0 \\ &=> \frac{dx}{dt} = x^2 \\ &=> \frac{dx}{x^2} = dt \\ &=> \int \frac{dx}{x^2} = \int dt \\ &=> -\frac{1}{x} = t + C \\ &=> -\frac{1}{\alpha(t)} = t + C \\ &=> \fbox{ $\alpha(t) = -\frac{1}{t + C} $ } \end{aligned} \]

3.2 可分离变量 ODE 求解

\[ \dot{x} = g(t)h(x) \quad h(x_0) \neq 0 \]

例1:

\[ \begin{aligned} &\quad \dot{x} = sin(t)e^x \quad x(0) = x_0 \\ &=> \frac{dx}{e^x} = sin(t)dt \\ &=> \int \frac{dx}{e^x} = \int sin(t)dt \\ &=> -e^{-x} = -cos(t) + C \\ &=> e^{-x} = cos(t) - C \\ &=> \fbox{ $\alpha(t) = ln(cos(t) - C) $ } \end{aligned} \]

3.3 线性 ODE 求解

\[ \begin{aligned} &\quad \dot{x} + A(t)x = B(t) \\ &=> \dot{x}e^{A(t)} + A(t)e^{A(t)}x = B(t)e^{A(t)} \\ &=> \frac{d}{dt}(e^{A(t)}x) = B(t)e^{A(t)} \\ &=> \int \frac{d}{dt}(e^{A(t)}x) dt = \int B(t)e^{A(t)} dt \\ &=> e^{A(t)}x = \int B(t)e^{A(t)} dt + C \\ &=> \fbox{ $\alpha(t) = e^{-A(t)}(\int B(t)e^{A(t)} dt + C) $ } \end{aligned} \]

4. 常微分方程解的性质

4.1 Lipschitz Continuity

Lipschitz Continuity

4.2 Banach Fixed Point Theorem

Banach Fixed Point Theorem

4.3 Picard-Lindelöf Theorem(for autonomous ODE)

Picard-Lindelöf Theorem for autonomous ODE

证明方式: 利用Lipschitz连续性,构造压缩映射(Contraction),利用Banach Fixed Point Theorem证明解的存在性和唯一性

Picard Iteration

使用Picard迭代法求解常微分方程

例1:

\[ \begin{aligned} &\dot{x} = x \quad x(0) = 1 \\ &\text{start with: } \alpha: (-\epsilon, \epsilon) \to \mathbb{R} \quad \alpha(t) = 1 \\ &\text{first step: } \Phi(\alpha)(t) = 1 + \int_0^t \alpha(s) ds = 1 + t\\ &\text{second step: } \Phi^2(\alpha)(t) = 1 + \int_0^t (1 + s) ds = 1 + t + \frac{t^2}{2} \\ &\text{n-th step: } \Phi^n(\alpha)(t) = 1 + t + \frac{t^2}{2} + ... + \frac{t^n}{n!} = \sum_{k=0}^{n} \frac{t^k}{k!} \ = e^t \\ \end{aligned} \]

4.4 Picard-Lindelöf Theorem(for non-autonomous ODE)

Picard-Lindelöf Theorem for non-autonomous ODE

Picard Iteration for non-autonomous ODE (special version)

特别的,当\(w: \mathbb{R} \times \mathbb{R^n} \to \mathbb{R^n}\) 是 Lipschitz continuous 时,Initial Value Problem 存在唯一的全局解

4.5 解的拓展、最大解、全局解(Extension of Solution, Maximal Solution, Global Solution)

  1. 解的拓展(Extension of Solution)

    如果存在 $ I \supsetneq (t_0 - \epsilon, t_0 + \epsilon) $ 使得 $ \tilde{\alpha} |_{(t_0 - \epsilon, t_0 + \epsilon)} = \alpha $,则称 $ \tilde{\alpha} $ 是 $ \alpha $ 的拓展

  2. 最大解(Maximal Solution)

    如果一个解 $ \alpha $ 不能被其他解拓展,则称 $ \alpha $ 是最大解

    Note

    对于4.3中的Initial Value Problem,存在唯一的最大解

    证明方式: 利用Picard-Lindelöf Theorem证明

  3. 全局解(Global Solution)

    如果最大解定义域 \(I = \mathbb{R}\),则称该解为全局解

4.6 IVP解的类型

对于4.3中的IVP,其最大解只有以下三种形式:

  1. 单射(Injective)
  2. 定点(Fixed Point)
  3. 周期(Periodic)

Quote

5. 线性微分方程组

\[ \boldsymbol{\dot{x}} = \boldsymbol{A}(t)\boldsymbol{x} + \boldsymbol{B}(t) \]

5.1 齐次线性微分方程组解空间

\[ \fbox { $ \begin{aligned} &\text{对应齐次系统的解集:} \\ &S_0 = \{ \alpha: I \to \mathbb{R^n} \quad | \quad \alpha(t) = \boldsymbol{\dot{x}} = \boldsymbol{A}(t)\boldsymbol{x} \quad\text{for all} \quad t \in I \} \\ &\text {构成一个 n 维的 $\mathbb{R}$-向量空间} \end{aligned} $ } \]

5.2 线性微分方程组的解

\[ \fbox{ $ \begin{aligned} &\boldsymbol{\dot{x}} = \boldsymbol{A}(t)\boldsymbol{x} + \boldsymbol{B}(t) \text{ 的解集为: } \\ &\quad \quad S = S_0 + \gamma \\ &\text{其中: } \space S_0 \text{ 为齐次线性微分方程组的解集} \\ &\quad \quad \quad \gamma \text{ 为非齐次线性微分方程组的一个特解} \end{aligned} $ } \]

6. 数值解法

6.1 Euler Method

\[ \begin{aligned} &\dot{x}(t) \approx \frac{x(t + h) - x(t)}{h} \\ &=> \quad x(t + h) \approx x(t) + h \dot{x}(t) \\ &=> \quad x(t + h) \approx x(t) + h w(t, x(t)) \end{aligned} \]

6.2 Backward Euler Method

\[ \begin{aligned} &\dot{x}(t) \approx \frac{x(t) - x(t - h)}{h} \\ &=> \quad x(t) \approx x(t - h) + h \dot{x}(t) \\ &=> \quad x(t) \approx x(t - h) + h w(t, x(t)) \end{aligned} \]

反向欧拉法是隐式方法,这是说需要求解一个方程才能得到新值 $ x_{n+1} $。通常用定点迭代或牛顿-拉弗森法(的某种修改版)实现之

6.3 显式 Runge-Kutta Method

\[ x_{n+1} = x_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) \]

其中:

\[ \begin{aligned} k_1 &= w(t_n, x_n) \\ k_2 &= w(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_1) \\ k_3 &= w(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_2) \\ k_4 &= w(t_n + h, x_n + hk_3) \\ \end{aligned} \]